Hepatitis B virus X protein inhibits extracellular IFN-α-mediated signal transduction by downregulation of type I IFN receptor

نویسندگان

  • IL-RAE CHO
  • MYUNGJU OH
  • SANG SEOK KOH
  • WARAPORN MALILAS
  • RATAKORN SRISUTTEE
  • BYUNG HAK JHUN
  • SANDRA PELLEGRINI
  • SERGE Y. FUCHS
  • YOUNG-HWA CHUNG
چکیده

We have previously shown that hepatitis B virus (HBV) protein X (HBX), a regulatory protein of HBV, activates Stat1, leading to type I interferon (IFN) production. Type I IFN secreted from HBX-expressing hepatic cells enforces antiviral signals through its binding to the cognate type I IFN receptor. We therefore investigated how cells handle this detrimental situation. Interestingly, compared to Chang cells stably expressing an empty vector (Chang-Vec), Chang cells stably expressing HBX (Chang-HBX) showed lower levels of IFN-α receptor 1 (IFNAR1) protein, a subunit of type I IFN receptor. The levels of IFNAR1 transcripts detected in Chang-HBX cells were lower than the levels in Chang-Vec cells, indicating that HBX regulates IFNAR1 at the transcriptional level. Moreover, we observed that HBX induced the translocation of IFNAR1 to the cytoplasm. Consistent with these observations, HBX also downregulated Tyk2, which is required for the stable expression of IFNAR1 on the cell surface. Eventually, Chang-HBX cells consistently maintained a lower level of IFNAR1 expression and displayed no proper response to IFN-α, while Chang-Vec cells exhibited a proper response to IFN-α treatment. Taken together, we propose that HBX downregulates IFNAR1, leading to the avoidance of extracellular IFN-α signal transduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Jak-Stat Signaling Pathway of Interferons System: Snapshots

Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...

متن کامل

Interferon-γ inhibits interferon-α signalling in hepatic cells: evidence for the involvement of STAT1 induction and hyperexpression of STAT1 in chronic hepatitis C

IFN-γ (interferon-γ ) modulates IFN-α therapy in chronic hepatitis C infection; however, the underlying mechanism remains unclear. Here we demonstrate that long-term (3–6 days) but not short-term (up to 1 day) IFN-γ treatment of human hepatoma Hep3B cells attenuates IFN-α activation of STAT1 (signal transducers and activators of transcription factor 1), STAT2 and STAT3, but enhances IFN-γ and i...

متن کامل

Type III Interferon Induces Distinct SOCS1 Expression Pattern that Contributes to Delayed but Prolonged Activation of Jak/STAT Signaling Pathway: Implications for Treatment Non-Response in HCV Patients

Suppressor of cytokine signaling 1 (SOCS1) has long been thought to block type I interferon signaling. However, IFN-λ, a type III IFN with limited receptor expression in hepatic cells, efficiently inhibits HCV (Hepatitis C virus) replication in vivo with potentially less side effects than IFN-α. Previous studies demonstrated that type I and type III activated Janus kinase/signal transducer and ...

متن کامل

IL-27, a cytokine, and IFN-λ1, a type III IFN, are coordinated to regulate virus replication through type I IFN.

IL-27, a member of the IL-12 family, plays a critical role in the control of innate and adaptive immune responses. IFN-λ1, a member of the type III IFN family, shows antiviral abilities. In this study, we investigated the effects of IL-27 and IFN-λ1 on the replication of hepatitis B virus (HBV), a major pathogen associated with a high risk for cirrhosis, liver failure, and hepatocellular carcin...

متن کامل

shRNA-mediated downregulation of α-N-Acetylgalactosaminidase inhibits migration and invasion of cancer cell lines

Objective(s): Extracellular matrix (ECM) is composed of many kinds of glycoproteins containing glycosaminoglycans (GAGs) moiety. The research was conducted based on the N-Acetylgalactosamine (GalNAc) degradation of ECM components by α-N-acetylgalactosaminidase (Nagalase) which facilitates migration and invasion of cancer cells. This study aims to investigate the effects of Naga-shRNA downregula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2012